If it's not what You are looking for type in the equation solver your own equation and let us solve it.
65y^2-40y=0
a = 65; b = -40; c = 0;
Δ = b2-4ac
Δ = -402-4·65·0
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-40}{2*65}=\frac{0}{130} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+40}{2*65}=\frac{80}{130} =8/13 $
| -6v-2(7+6v)=112 | | a/4+1=2 | | n/5+9=2n | | 30-5x=15x+10x | | 11.20=5+8s-5 | | t/5+2=-7+t/5 | | 11x+3=140 | | 6x+5=5x+16=7x-3 | | 102=6(4+3n)+6 | | 12=18+3x | | 2.10+6o=1.30+4o | | 2.10×6o=1.30×4o | | (x+2)+(x+1)+2=x+(2x+1) | | 32c-23-14c-31=26c | | 5t+11=7t=13 | | 3x-6=+5 | | 2x-10/4x+20=50 | | y(-3y^2)+32y+72=1152 | | x(-3x^2)+32x+72=1152 | | w(-3w^2)+32w+72=1152 | | 4y−6=2y+2 | | -1/4x+40=-2/3x+10 | | 4(2x+3×)=30 | | 12x^2-260x+966=0 | | y=4.3y | | -140=5(4n-8) | | x2=30−x2 | | 8x-34=12x | | 11x=2+(77-x) | | 40=70-10x | | A27=-11+7n | | 7x^2=8+5x^2 |